Application of the Box-Behnken design to the optimization of process parameters in foam cup molding

نویسندگان

  • Long Wu
  • Kit-lun Yick
  • Sun-pui Ng
  • Joanne Yip
چکیده

Currently, foam molding technologies are widely adopted for most bra styles, which demonstrate the incomparable advantages in the contemporary intimate apparel industry. The determination of proper molding conditions, such as molding temperatures and length of time on the basis of cup sizes and styles, is crucial in achieving the required cup shape with high stability, which is regarded as the most challenging part of the molded bra making process. To determine the optimal process parameter settings, numerous process trials are generally required to evaluate the molding variables and their interactions. This study proposes a novel systematic methodology to identify the optimal molding process parameters based on design of experiment (DOE) and a parameterization-based remesh method to evaluate the 3D shape conformity of molded cups. By solving the regression equation obtained from a Box–Behnken design (BBD) and analyzing the response surface plots, the results prove that molding temperature has greater influence than the length of the dwell time on the 3D shape conformity of molded cups. The optimal molding conditions can be determined for the cup depths of different sized mold heads, which are validated by the experimental results. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Box Behnken Design to Optimize the Parameters to Synthesis Graphene by CVD Process

This paper discusses the use of Box Behnken design (BBD) approach to plan the experiments for turning the yield of CVD, thickness and layer number of graphene sheets with an overall objective of optimizing the process to provide higher graphene production volume, fewer layers and thinness structure of graphene. BBD is having the maximum efficiency for an experiment involving four factors such a...

متن کامل

Application of Box Behnken Design to Optimize the Parameters to Synthesis Graphene by CVD Process

This paper discusses the use of Box Behnken design (BBD) approach to plan the experiments for turning the yield of CVD, thickness and layer number of graphene sheets with an overall objective of optimizing the process to provide higher graphene production volume, fewer layers and thinness structure of graphene. BBD is having the maximum efficiency for an experiment involving four factors such a...

متن کامل

Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4

For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi desi...

متن کامل

Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4

For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi desi...

متن کامل

Simultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Saccharomyces Cerevisiae by Plackett-Burman and Box-Behnken Design

Selenium (Se) as a vital trace element has many biological activities such as anti-inflammation and anti-oxidation. Selenomethionine as an organic selenium plays a vital role in the response to oxidative stress. At present, Saccharomyces cerevisiae is one of the best microorganisms that has the ability to accumulate selenium. Production of Seleno-yeast was done by growing Saccharomyces cerevisi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012